The generator matrix 1 0 1 1 1 1 X+3 1 1 2X 1 1 1 0 1 1 1 1 1 3 1 1 X 1 1 2X+3 1 1 3 1 1 1 1 1 0 1 1 1 1 1 1 2X 1 0 X+3 1 1 1 2X+3 1 1 0 1 1 X+3 2X+3 1 3 X+3 X 0 1 1 1 X 1 1 1 1 1 0 1 1 8 X+3 X+2 1 2X+4 2X 1 2X+8 X+1 0 1 2 2X+4 X+1 X+8 X+3 1 2X X+4 1 2X+2 3 1 1 X 1 2X+1 X+4 8 0 2X+2 1 X+1 3 8 X+2 2X+7 X+3 1 X+8 1 1 0 2X+8 2X+3 1 2X+6 X+2 1 2X+8 2X+8 1 1 2X+8 1 1 1 1 7 2X+2 2X+3 1 5 5 2X+3 X+1 X 0 0 2X 0 0 3 3 3 6 0 0 3 2X+6 2X+3 X+3 2X+6 2X X 2X X+6 2X+6 X+3 X X+3 X+3 X+6 X+6 X+3 X+3 X X+6 0 3 X+3 3 3 X+3 2X+3 0 2X+6 2X 2X 2X 2X X 6 6 X 0 2X+3 2X+6 3 X 3 2X+6 X+6 2X+3 2X+3 2X 2X+3 2X+3 2X+6 2X+6 X X+3 X X+6 2X 6 X+6 0 0 0 6 0 0 0 3 0 0 3 6 0 0 3 6 3 6 6 6 3 3 3 3 6 0 0 6 6 3 0 3 6 6 6 3 0 3 0 0 6 6 3 3 0 6 6 3 3 6 6 6 3 0 3 6 0 6 6 0 0 0 6 0 6 6 6 0 6 6 0 0 0 0 3 3 6 6 6 3 6 0 3 0 6 6 3 6 3 0 3 3 3 0 6 0 6 0 3 0 0 0 3 3 3 0 0 6 6 6 0 0 3 3 3 0 3 3 6 6 3 0 3 3 6 6 0 3 6 3 6 6 6 3 0 0 6 6 6 3 generates a code of length 70 over Z9[X]/(X^2+3,3X) who´s minimum homogenous weight is 129. Homogenous weight enumerator: w(x)=1x^0+160x^129+186x^130+516x^131+1104x^132+1320x^133+1698x^134+2680x^135+2922x^136+3840x^137+5176x^138+5652x^139+6426x^140+6630x^141+5940x^142+4614x^143+4128x^144+2478x^145+1572x^146+852x^147+324x^148+168x^149+138x^150+102x^151+90x^152+172x^153+18x^154+24x^155+74x^156+12x^157+12x^159+6x^161+8x^162+2x^165+4x^171 The gray image is a code over GF(3) with n=630, k=10 and d=387. This code was found by Heurico 1.16 in 11 seconds.